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Abstract In the present study we have analyzed hydrogen
bonding in dimer and trimer of oxalic acid, based on a
recently proposed charge and energy decomposition
scheme (ETS-NOCV). In the case of a dimer, two
conformations, α and β, were considered. The deformation
density contributions originating from NOCV’s revealed
that the formation of hydrogen bonding is associated with
the electronic charge deformation in both the σ—(Δρσ) and
π-networks (Δρπ). It was demonstrated that σ-donation is
realized by electron transfer from the lone pair of oxygen
on one monomer into the empty r

»
H�O orbital of the second

oxalic acid fragment. In addition, a covalent contribution is
observed by the density transfer from hydrogen of H-O
group in one oxalic acid monomer to the oxygen atom of
the second fragment. The resonance assisted component
(Δρπ), is based on the transfer of electron density from the
π—orbital localized on the oxygen of OH on one oxalic
acid monomer to the oxygen atom of the other fragment.

ETS-NOCV allowed to conclude that the σ(O—HO)
component is roughly eight times as important as π
(RAHB) contribution in terms of energetic estimation.
The electrostatic factor (ΔEelstat) is equally as important
as orbital interaction term (ΔEorb). Finally, comparing β-
dimer of oxalic acid with trimer we found practically no
difference concerning each of the O–-HO bonds, neither
qualitative nor quantitative.
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Introduction

Hydrogen bonding (HB) plays an important role in
biochemistry [1, 2]. Accordingly, many attempts were
made to describe HB-phenomenon in both experimental
and theoretical laboratories [3–11]. For the purpose of
understanding the nature of hydrogen bonding, theoretical
approaches appeared to be of significant importance [12–
19]. Especially, electrostatic-covalent HB model, derived
by Gilli [20, 21] from the systematic analysis of structural
and spectroscopic data, allowed to make a comprehensive
classification of H-bonds in a different chemical classes: e.
g., charge assisted hydrogen bonds, low barrier hydrogen
bonds, dihydrogen bonds, and resonance-assisted hydrogen
bonds (RAHBs). It clearly shows that different factors can
influence the nature of hydrogen connections.

For the purpose of HB description, various energy
decomposition analysis (EDA) were also used [22–25, 46].
In such decomposition schemes, the total interaction energy
between interacting sub-systems is divided up into a few
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chemically meaningful contributions (electrostatic, ex-
change, charge-transfer, relaxation, etc.). Despite great
usefulness of these methods, as they allow to extract
stabilizing and destabilizing factors, none of them provide
direct, qualitative and quantitative, separated information
about σ—and π-contributions. Such specific knowledge on
the hydrogen bonding phenomenon can be useful in
understanding the structures of bio-molecules and further
in a description of reactivity.

We have recently developed the ETS-NOCV scheme by
combining the extended transition state (ETS) [26, 27]
energy decomposition approach with the natural orbitals for
chemical valence (NOCV) density analysis method [28–
34]. It was shown that ETS-NOCV is able to extract and
directly quantify the crucial components (σ,π,δ, etc.) that
participate in various types of chemical bonds including
predominantly donor-acceptor and covalent interactions
[35, 36]. Furthermore, we have shown that ETS-NOCV
can also be useful in a description of weak bonds [35, 36],
including intra—and inter-molecular hydrogen bonding.
For example, we have found, based on the analysis of
intermolecular bonding in Adenine-Thymine base pair, that
ETS-NOCV provides separated, qualitative and quantitative
information not only about both σ(O—HN) and σ(N—HN)
interactions, but also about the resonance assisted hydrogen
bonding contribution (π) [35].

The main goal of this article is to extend our study on
weak intermolecular interaction by characterization of
hydrogen bonding in the dimeric and trimeric systems
consisting of both σ(O—HO) and π-interactions between
the monomers. We will consider in our analysis the oxalic
acid dimers exhibiting two different conformations α and β
(1 and 2), Fig. 1. In addition, we will investigate oxalic acid
trimers, 3 and 4, based on two different bond-partitioning,
as indicated in Fig. 1. The purpose of doing so is to obtain a
compact description of each O–-HO interaction in trimer of
oxalic acid. To the best of our knowledge this is the first
study reporting on the character of bonding in the oxalic
acid systems based on charge and energy decomposition
analysis. All structures discussed here were fully optimized
after initial guesses taken from the Cambridge Structural
Database [37, 38]. For the sake of clarity of presentation we
will use throughout our study the “α-dimer” and “β-dimer”
terms to describe the oxalic acid dimers that exhibit two
different conformations α and β, respectively.

Computational details

All the calculations, within dDensity functional theory
approach, were based on the Amsterdam density functional
(ADF2009) program in which ETS-NOCV scheme was
implemented [39–43]. The Becke-Perdew exchange-

correlation functional [44, 45] was applied (BP86). A
standard triple-zeta STO basis containing two sets of
polarization functions was adopted for all of the elements
(TZ2P). Auxiliary s, p, d, f, and g STO functions, centered
on all nuclei, were used to fit the electron density. It was
proven previously for similar systems [35, 46] that
optimized structures and interaction energies based on
BP86/TZ2P calculations are in line with the corresponding
estimates obtained from the experiment and from high-level
ab initio methods. The contours of deformation densities
were plotted using ADF-GUI [47].

In our analysis each of the system is divided up into two
individual fragments A and B, as shown schematically by a
thick line in Fig. 1. Then we used the ETS-NOCV method
to study the interaction between A and B, as they are
brought together to form A···B. Thus, our analysis is based
on the bonding between the two close shell molecular
fragments.

Computational methods

As we mentioned in the previous paragraph, our analysis is
based on the ETS-NOCV approach which is a combination
of the extended transition state (ETS) [26, 27] method with
the natural orbitals for chemical valence (NOCV) [28–34]
scheme.

We shall start by presenting the basic concepts of the
ETS method. In this scheme, the total bonding energy
between the interacting fragments (ΔEtotal) is divided into
four chemically meaningful components Eq. 1:

ΔEint ¼ ΔEdist þΔEelstat þΔEPauli þΔEorb: ð1Þ

The first component, referred to as the distortion term
ΔEdist, represents the amount of energy required to promote
the separated fragments from their equilibrium geometry to
the structure they will take up in the combined molecule. The
second term, ΔEelstat, corresponds to the classical electro-
static interaction between the promoted fragments as they are
brought to their positions in the final complex. The third
term, ΔEPauli, accounts for the repulsive Pauli interaction
between occupied orbitals on the two fragments in the
combined complex. Finally, the last term, ΔEorb, represents
the stabilizing interactions between the occupied molecular
orbitals on one fragment with the unoccupied molecular
orbitals of the other fragment as well as the mixing of
occupied and virtual orbitals within the same fragment
(intra-fragment polarization) after the two fragments have
been united. We can write the change in density that gives
rise to ΔEorb as

Δrð1Þ ¼
X

l

X
n
ΔPmnlð1Þnð1Þ ð2Þ

1790 J Mol Model (2010) 16:1789–1795



where the sum is over all the occupied and virtual molecular
orbitals on the two fragments. It now follows from the ETS
scheme that the ΔEorb term is given by [26, 27]

ΔEorb ¼
X

l

X
m
ΔPlmF

T
lm ð3Þ

where FTS
lm is a Kohn-Sham Fock matrix element that is

defined in terms of a (transition state) potential that is mid
between that of the combined fragments and the final
molecule. It should be emphasized that the meaning of
“transition state” in the ETS approach is completely
different from that commonly used in the context of the
transition state theory.

Turning next to the NOCV approach, we note that
historically the natural orbitals for chemical valence
(NOCV) [28–34] have been derived from the Nalewajski-
Mrozek valence theory[48–54]. However, from a mathe-
matical point of view the NOCV’s, ψi, are simply defined
as the eigenvectors,

y ið1Þ ¼
XM
l

Ci;llð1Þ ð4Þ

that diagonalize the deformation density matrix ΔP
introduced in Eq. 2. Thus,

ΔPCi ¼ viCi ; i¼1;M ð5Þ
where M denotes the total number of molecular orbitals on
the fragments and Ci is a column vector containing the
coefficients that defines the NOCV ψi of Eq. 4. It follows
further [28–34] that the deformation density Δρ of Eq. 2
can be expressed in the NOCV representation as a sum of
pairs of complementary eigenfunctions (ψ−k ,ψk)
corresponding to the eigenvalues—vk and +vk with the
same absolute value but opposite signs:

ΔrðrÞ ¼
XM=2

k¼1

vk �y2
�kðrÞ þ y2

kðrÞ
� � ¼

XM=2

k¼1

ΔrkðrÞ: ð6Þ

Expression (6) is the most important for the interpreta-
tion of NOCV, as it defines the charge-flow channels
decomposing the overall deformation density. Therefore, in

the present study we will not discuss the orbitals
themselves, but only the respective deformation density
contributions, Δρk. Examples of orbitals and their inter-
pretation can be found elsewhere [28–30].

In the combined ETS-NOCV scheme [35, 36] the orbital
interaction term (ΔEorb) is expressed in terms of NOCV’s
as

ΔEorb ¼
XM=2

k¼1

vk �FTS
�k;�k þ FTS

k;k

h i
ð7Þ

where the diagonal Kohn-Sham matrix elements are defined
over NOCV’s with respect to the transition state (TS). The
advantage of the expression in Eq. 7 for ΔEorb over that of
Eq. 3 is that only a few complementary NOCV pairs
normally contribute significantly to ΔEorb. We see from the
above Eqs. 6, 7 that for each complementary NOCV pair,
representing one of the charge deformations Δρk, not only
can visualize Δρk but also provide the energy contributions
to the bond energy from Δρk [28–34].

The total bonding enthalpies (De=−ΔEint) reported here
do not include zero point energy additions, finite temper-
ature contributions or basis set superposition error correc-
tions. Our interest here has been to study the electronic
nature of hydrogen bond formation through trends in the
(electronic) bond enthalpy as revealed by our recently
proposed ETS-NOCV procedure [35, 36].

Results and discussion

Let us start our discussion from a qualitative description of
hydrogen bonding in β-dimer of oxalic acid (2), which is
more stable (by 9.9 kcal mol−1) compared to dimer
exhibiting α-conformation (1), Table 1. It is clear from
Fig. 2 that three deformation density contributions, Δρσ,
ΔrRAHBp and Δρpol, based on complementary NOCV’s
Eq. 6, describe the formation of two equivalent O–-HO
interactions in 2. The dominant component σ(O—HO)
originates from the donation of electron density from the
lone pair of oxygen into the empty r

»
H�O, characterizing

Fig. 1 The hydrogen bonded
systems studied in the present
work (1–4). A thick line repre-
sents the way of fragmentation
used in a description of hydro-
gen bonding. In bonding analy-
sis of 4 the middle monomer
was treated as first fragment (a)
and the terminal monomers as
the second fragment (b)

J Mol Model (2010) 16:1789–1795 1791



anti-bonding orbital of H-O bond in the oxalic acid
monomer. In addition, density is shifted from hydrogen of
H-O group of one oxalic acid monomer to oxygen of the
second fragment. The density deformation (Δρσ) in the σ-
network of 2 gives rise to an orbital interaction stabilization
of ΔEs

orb ¼ �28:3 kcal mol−1. We note that the participa-
tion of s

»
HO in the hydrogen bonding leads to a stretch of

the H-O bond by 0.06Å, compared to non-bonded
monomer. The second contribution to ΔEorb, presented in
Fig. 2, is ΔrRAHBp , with the corresponding energy
ΔERAHB

p ¼ �3:5kcal mol−1. It is evident from the contour
of ΔrRAHBp that this contribution characterizes π-
polarization, which apparently justifies assignment of
oxalic acid to the group of resonance assisted hydrogen
bonded (RAHB) systems. We observed that the density
depletion in the σ-network gives rise to density buildup in
the π-frame work and visa versa. More specifically, we
noted a depletion of electron density from the π-type orbital
on the oxygen atom of the OH group. It leads to a

contraction (by 0.05Å) of the HO-C bond. At the same time
charge is donated to the carbonyl oxygen by electron
transfer to the p

»
CO orbital. The result is an elongation of the

CO carbonyl bond by 0.02Å. Finally, the last contribution,
Δρpol, with the corresponding energy by −4.1 kcal mol−1,
shows the density changes within each oxalic acid
monomer (so called intra-fragment polarizations).

The second stabilizing contribution in 2 comes from the
electrostatic attraction (ΔEelstat) between the oxalic acid
monomers. It amounts to −36.7 kcal mol−1. Such an
interaction is due to the stabilizing interaction between the

H
dþ� O

d�
dipole of the HO bond in one monomer and the

O
d0�

� C
d0þ

dipole of the carbonyl group of the second oxalic
acid fragment. Further stabilization comes from the fact that
the electron density of one fragment only partially can
shield the interaction of the nuclei on the same fragment
from the electron density on the other fragment. The
reduced shielding is due to inter-penetration of the two
fragment densities. It should be noted that ΔEorb and
ΔEelstat are of the same importance (in absolute value by
∼36 kcal mol

−1
). In addition, it is worth emphasizing that

σ(O—HO) component (78% of ΔEorb) is roughly eight
times as important as π-RAHB contribution (9.8% of
ΔEorb). At the same time, the stabilizing effect (originating
from ΔEorb and ΔEelstat) is reduced by the repulsive
interaction between the occupied carbonyl lone-pair orbital
on one monomer and the occupied O-H bonding orbital on
the other oxalic acid fragment, what is accordingly
manifested by considerable Pauli repulsion contribution
(ΔEPauli), by 51.5 kcal mol−1, Table 1. The total stabilization
stemming from all bonding components Eq. 1, given per one
hydrogen O–-HO bond, is by ΔEint/2=−7.95 kcal mol−1,

Table 1 ETS-energy decomposition1 (in kcal mol−1) of the hydrogen
bonding in 1–4

Systems2 ΔEPauli ΔEelstat ΔEorb ΔEdist ΔEint

1 12.3 −11.1 −7.7 0.5 −6.0
2 51.5 −36.7 −35.9 5.3 −15.9
3 51.7 −36.8 −36.3 5.4 −15.9
4 103.6 −74.4 −71.6 10.7 −31.6

1ΔEint ¼ ΔEPauli þΔEelstat þΔEdist þΔEorb.
2 The labeling corresponds to Fig. 1

Fig. 2 The contours of
deformation density contribu-
tions Δrs ;ΔrRAHBp ;Δrpol
describing the hydrogen
bonding between the monomers
in 2. In addition the
corresponding ETS-NOCV-
based energies (in kcal mol−1)
are shown. The numerically
smallest contour values are
±0.001 a.u.
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Table 1. It is made up from the orbital interaction
stabilization, ΔEorb/2=−17.95 kcal mol−1 and destabilizing
(ΔEelstat + ΔEPauli + ΔEdist)/2=10.0 kcal mol−1.

The ETS results gathered in Table 1 lead to the
conclusion that α-conformation of oxalic acid dimer (1) is
energetically less stable than the corresponding β-structure
(|ΔEint| lower by 9.9 kcal mol−1), as a result of changes in
all of the bonding contributions defined in Eq. 1. The main
reason of a relatively small stabilization from ΔEorb is that
solely one O–-HO bond is formed between the oxalic acid
monomers. The qualitative picture of σ(O—HO) formation
(see Fig. 3) is analogous to 2, with practically no
participation (<1 kcal mol−1) from the π-network. The lack
of considerable RAHB contribution is related to the broken
planarity in 1. The lower destabilization from Pauli term, as
well as lower stabilization from electrostatic contribution
for 1 originate from the fact that the monomers are further
apart (by 0.2Å), compared to β-dimer (2). We should
remark at this point that the experimental lattice energy
estimations for α—and β-conformations of oxalic acid in
the crystal show that these two forms are roughly similar in
stability [55]. This is not consistent with our result.
Apparently, the dimeric and trimeric structures are not
appropriate as models of real, infinite, periodic crystals.
However, it was not our intention. As it was stated in the
Introduction section, the main goal of our investigation was

to verify the applicability of our new ETS-NOCV scheme
in a description of bonding in hydrogen bonded molecules
that exhibit both σ(O—HO) and π (RAHB) interactions. It
would be worthy to conduct in the future a similar energy
decomposition analysis (ETS), as implemented in the
BAND program [56], which is suitable for periodic
calculations. Such an analysis could shed light on the
origin of stability for both oxalic acid conformations in the
crystal [55].

It is obvious from three deformation density contribu-
tions and their corresponding energies, depicted in Fig. 4,
that there is practically no difference in the picture of O—
HO bonding, neither qualitative nor quantitative when
comparing to dimer 2 (Fig. 2). Furthermore, the data
collected in Table 1 lead to the conclusion that not only
electronic factor ΔEorb, but as well the remaining con-
tributions, i.e., Pauli repulsion, electrostatic and distorsion
terms, are of the same magnitude, as in the case of 2.
Accordingly, the total interaction energy, ΔEint, in trimer 3
is exactly the same as for dimer 2. The same qualitative
picture of bonding formation in 2 and 3 lead to the
conclusion that NOCV’s exhibit a feature of localized
orbitals, i.e. they reveal the same characteristics of a given
bond when going from one molecule to another.

Up to this point we have analyzed the two O–-HO
interactions in trimer 3, i.e., the trimer was divided up into

Fig. 3 The contours of defor-
mation density contributions
Δrs ;ΔrRAHBp describing the
hydrogen bonding between
the monomers in 1. In addition
the corresponding ETS-NOCV-
based energies (in kcal mol−1)
are shown. The numerically
smallest contour values are
±0.001 a.u.

Fig. 4 The contours of defor-
mation density contributions
Δrs ;ΔrRAHBp ;Δrpol describing
the hydrogen bonding in 3. In
addition the corresponding ETS-
NOCV-based energies (in
kcal mol−1) are shown. The
numerically smallest contour
values are ±0.001 a.u.
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two subsystems (A and B), as indicated in Fig. 1. For the
purpose of simultaneous analysis of all four O–-HO
interactions that are present in β-oxalic acid trimer, we have
considered another bonding situation 4. In such a bonding
pattern we have used the middle β-oxalic acid as one
fragment and the remaining two monomers as the second
fragment. In such a way the formation of all four O–-HO
bonds connected to each monomer is described, Fig. 1.

It is clear from the deformation densities and the
corresponding energies, presented in Fig. 5, that the
total strength of four σ(O—HO) contributions is by
−56.9 kcal mol−1, whereas the resonance assisted hydro-
gen bonding component (RAHB) is by−6.5 kcal mol−1.
The remaining intra-fragment polarizations amounts to
−8.2 kcal mol−1. Further, an inclusion of other stabilizing
(electrostatic) and destabilizing (Pauli repulsion and
distorsion term) factors gives rise to the total interaction
energy by−31.6 kcal mol−1, which is, in line with the
intuition, nearly doubled in magnitude, compared to
ΔEint for system 3, Table 1. It confirms an equivalence
of each O–-HO interaction in trimer of oxalic acid.

To the best of our knowledge there is no available data in
the literature on the character of bonding in dimer or trimer
of oxalic acid. However, a few theoretical studies were
reported recently for familiar molecules, i.e. for pyrrole-2-
carboxylic acid and formic acid dimers, containing as well
the two equivalent O–-HO interactions, supported further
by RAHB contribution [57, 58]. In these studies the
electronic enthalpies (per one O–-HO hydrogen bond) are
−5.8 kcal mol−1 and−8.5 kcal mol−1 for formic and pyrrole-
2-carboxylic dimers, respectively. We obtained the value of
−7.9 kcal mol−1 for β-dimer. In addition, similar qualitative
picture of bonding formation based on the total deformation
density contours was found by Beck et al. and Góra et al.
[57, 58]. In the above studies, however, no information on
the relative importance of σ—and π-contributions was
provided. Recently, Guerra et al. reported for Adenine-

Thymine and Guanine-Cytosine base pairs that the domi-
nant contribution comes from the σ-component, whereas π-
contribution adds very little stabilization [46]. This is a
similar trend to our findings for oxalic acid molecules.

Concluding remarks

In the present study we have characterized hydrogen
bonding in the dimer and the trimer of α—and β-oxalic
acid, based on the recently proposed ETS-NOCV
procedure. The main attention was paid to characteriza-
tion of HB from both qualitative (by providing defor-
mation density contributions, Δρk) and a quantitative (by
providing energetic estimations ΔEk for each Δρk) point
of view.

We found based on the NOCV-deformation density
contours that the formation of hydrogen bonding is
associated with the electronic charge redistribution in both
the σ—(Δρσ) and π-networks (Δρπ). It was shown that σ-
donation is realized by electron transfer from the lone pair
of oxygen on one monomer into the empty r

»
H�O orbital of

the second oxalic acid fragment. In addition, a covalent
contribution is observed by the density transfer from
hydrogen of H-O group in one oxalic acid monomer to
the oxygen atom of the second fragment. The resonance
assisted component (Δρπ), RAHB, is based on the transfer
of electron density from the π—orbital localized on the
oxygen of OH on one oxalic acid monomer to the oxygen
atom of the other fragment. The σ(O—HO) component is
roughly eight times as important as π-contribution in β-
oxalic acid dimer (2) and trimers (3,4). The electrostatic
factor (ΔEelstat) is quantitatively as important as orbital
interaction term (ΔEorb). Finally, comparing β-dimer (2)
with trimer of oxalic acid (3) we found practically no
difference in the characteristics of each of the O—HO
bonds, neither qualitative nor quantitative.

Fig. 5 The contours of defor-
mation density contributions
Δrs ;ΔrRAHBp ;Δrpol describing
the hydrogen bonding in 4. In
addition the corresponding ETS-
NOCV-based energies (in
kcal mol−1) are shown. The
numerically smallest contour
values are ±0.001 a.u.
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